Standard 6:	Standard 6: Statistics								
		Pre-Algebra Plus	Algebra	Geometry	Algebra II	Fourth Course	12		
Benchmark 1 (Part 1)	Develop understanding of statistical variability. Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers.				Summarize, represent, and interpret data on a single count or measurement variable. Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.				
	Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape. Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single								
Benchmark 1 (Part 2)	number. Summarize and describe distributions.		Summarize, represent, and interpret data on a single count or measurement variable.						
	Display numerical data in plots on a number line, including dot plots, histograms, and box plots.		Represent data with plots on the real number line.						
	Summarize numerical data sets in relation to their context, such as by:		Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.						

		Interpret differences in		
		shape, center, and spread in		
		the context of the data sets,		
		accounting for possible		
		effects of extreme data		
		points (outliers).		
		Investigate patterns of		
Benchmark 1				
		association in bivariate data.		
(Part 3)				
		Construct and interpret		
		scatter plots for bivariate		
		measurement data to		
		investigate patterns of		
		association between two		
		quantities. Describe patterns		
		such as clustering, outliers,		
		positive or negative		
		association, linear		
		association, and nonlinear		
		association.		
		Know that straight lines are		
		widely used to model		
		relationships between two		
		quantitative variables. For		
		scatter plots that suggest a		
		linear association, informally		
		fit a straight line, and		
		informally assess the model		
		fit by judging the closeness		
		of the data points to the line.		
		, , , , , , , , , , , , , , , , , , , ,		
		Use the equation of a linear		
		model to solve problems in		
		the context of bivariate		
		measurement data,		
		interpreting the slope and		
		intercept.		
		Understand that patterns of		
		association can also be		
		seen in bivariate categorical		
		data by displaying		
		frequencies and relative		
		frequencies in a two-way		
		table. Construct and		
		interpret a two-way table		
		summarizing data on two		
		categorical variables		
		collected from the same		
		subjects. Use relative		
		frequencies calculated for		
		rows or columns to describe		
		possible association		
		between the two variables.		
		DOLWCCII IIIC IWO VAIIADIGS.		

	_				
Benchmark 1 (Part 4)			Summarize, represent, and interpret data on two categorical and quantitative variables. (Linear focus; discuss		
			general principle)		
			Summarize categorical data		
			for two categories in two-		
			way frequency tables.		
			Interpret relative frequencies		
			in the context of the data.		
			Recognize possible		
			associations and trends in		
			the data		
			Represent data on two		
			quantitative variables on a		
			scatter plot, and describe		
			how the variables are		
			related.		
Benchmark 1 (Part 5)			Interpret linear models.		
			Interpret the slope (rate of		
			change) and the intercept		
			(constant term) of a linear		
			model in the context of the		
			data.		
			Compute (using technology)		
			and interpret the correlation		
			coefficient of a linear fit.		
			Distinguish hat was		
			Distinguish between correlation and causation.		
Benchmark 2		Use random sampling		Understand and evaluate	
		to draw inferences		random processes	
(Part 1)		about a population.		underlying statistical	
				experiments.	
		Understand that statistics		Understand statistics as a	
		can be used to gain		process for making	
		information about a		inferences about population	
		population by examining a		parameters based on a	
		sample of the population;		random sample from that	
		generalizations about a		population.	
		population from a sample			
		are valid only if the sample			
		is representative of that			
		population. Understand that			
		random sampling tends to			
		produce representative			
		samples and support valid			
		inferences.			

	Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions.		Decide if a specified model is consistent with results from a given datagenerating process, e.g., using simulation.	
Benchmark 2 (Part 2)	Draw informal comparative inferences about two populations.		Make inferences and justify conclusions from sample surveys, experiments and observational studies.	
	Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability.		Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.	
	Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations.		Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.	
			Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant. Evaluate reports based on	
Benchmark 3 (Part 1)	Investigate chance processes and develop, use, and evaluate probability models.	Use the rules of probability to compute probabilities of compound events in a uniform probability model	data.	

	Understand that the	Find the conditional		
	probability of a chance	probability of A given B as		
	event is a number between	the fraction of B's outcomes		
	0 and 1 that expresses the	that also belong to A, and		
	likelihood of the event	interpret the answer in terms		
	occurring. Larger numbers	of the model.		
	indicate greater likelihood. A	of the model.		
	probability near 0 indicates			
	an unlikely event, a			
	probability around 1/2			
	indicates an event that is			
	neither unlikely nor likely,			
	and a probability near 1			
	indicates a likely event.			
	Approximate the probability	Apply the Addition Rule, P(A		
	of a chance event by	or B) = $P(A) + P(B) - P(A)$		
	collecting data on the	and B), and interpret the		
	chance process that	answer in terms of the		
	produces it and observing	model.		
	its long-run relative			
	frequency, and predict the			
	approximate relative			
	frequency given the			
	probability.			
	Develop a probability model	(+) Apply the general		
	and use it to find	Multiplication Rule in a		
	probabilities of events.	uniform probability model,		
	Compare probabilities from	P(A and B) = P(A)P(B A) =		
	a model to observed	P(B)P(A B), and interpret		
	frequencies; if the	the answer in terms of the		
	agreement is not good,	model.		
	explain possible sources of	model.		
	the discrepancy.			
		(1) [1]		
	Find probabilities of	(+) Use permutations and		
	compound events using	combinations to compute		
	organized lists, tables, tree	probabilities of compound		
	diagrams, and simulation.	events and solve problems.		
Benchmark 3		Understand independence		
		and conditional probability		
(Part 2)		and use them to interpret		
(/		data.(Link to data from		
		simulations or experiments)		
		 Describe events as subsets	 	
		of a sample space (the set		
		of outcomes) using		
		characteristics (or		
		categories) of the outcomes,		
		or as unions, intersections,		
		or complements of other		
		events ("or," "and," "not").		
		1		

		Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.			
		Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.			
		Construct and interpret two- way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities.			
		Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations.			
Benchmark 4 (Part 1)		rules	Use probability to evaluate outcomes of decisions. Include more complex situations	Use probability to evaluate outcomes of decisions.	
		(+) Use probabilities to make fair decisions.		Weigh the possible outcomes of decisions by assigning probabilities to payoff values and finding expected values.	
		(+) Analyze decisions and strategies using probability concepts.	(+) Analyze decisions and strategies using probability concepts.		
Benchmark 4 (Part 2)				Calculate expected values and use them to solve problems.	

			(+) Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.
			(+) Calculate the expected value of a random variable; interpret it as the mean of the probability distribution. (+) Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the
			expected value. (+) Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value.