| K | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Physical Science | Biology | Introduction to
Chemistry | Chemistry | Astronomy | Geology | Anatomy | Physics | Environmental
Ecology | |---|--|---|---|--|---|--|--|--|---|----------------------|------------------------------|-------------------------|--|---|---------|---------|---| | Standard 1: Earth | and Space | nowledge of | Benchmark Atlinde | retand and annly kn | owledge of | Renchmark A: Unde | aretand and annly kr | owledge of the etructure | Benchmark A: Unde | retand and apply kn | owledge of energy in | the earth eyetem (F | Earth Systems) | | | | | | properties of earth | lerstand and apply kn
materials. | lowicage of | properties and uses | erstand and apply kno
s of earth materials. | micage of | and processes of the
change the earth an | e earth system and
id its surface. (Earth | owledge of the structure
the processes that
Systems) | Denorman A. Onde | пошна ина арргу ки | owicage of chargy in | the carti system. (L | carar oystems) | | | | | | | Recognize that
Earth materials
consist of solids,
liquids and gases. | Use information from several sources to provide evidence that Earth events can occur quickly or slowly. (2-ESS1-1) | | Explain how earth
materials provide
many of the
resources that
humans use and
their affect on the
environment. (4-
ESS3-1) | Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment. (5-ESS3-1) | Develop a model to
describe the cycling
of water through
Earth's systems
driven by energy
from the sun and
the force of gravity.
(MS-ESS2-4) | | Develop a model to describe the cycling fearth's materials and the flow of energy that drives this process. (MS-ESS2-1) | | | | | | Develop a model to illustrate how
Earth's internal and
surface processes
operate at different
spatial and
temporal scales to
form continental
and ocean-floor
features. (HS-
ESS2-1) | | | Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. (HS-ESS2-4) | | | | Obtain information
to identify where
water is found on
Earth and that it
can be solid or
liquid. (2-ESS2-3) | | | | Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects. (MS-ESS3-2) | | Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales. (MS-ESS2-2) | | | | | | Develop a model
based on evidence
of Earth's interior to
describe the cycling
of matter by
thermal convection.
(HS-ESS2-3) | | | | | | | | | | | Consruct and argument supported by evidence for how increases in human population and percapita consumption of natural resources impact Earth's systems. (MS-ESS3-4) | | Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions. (MS-ESS2-3) | | | | | | Use a model to
describe how
variations in the
flow of energy into
and out of Earth's
systems result in
changes in climate.
(HS-ESS2-4) | | | | | | | | | | | | | Evaluate evidence of
the past and current
movements of
continental and
oceanic crust and the
theory of plate
tectonics to explain the
ages of crustal rocks.
(HSESS1-5) | | | | | | | | | | | | | | | | | | | Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to forn continental and oceanfloor features. (HS-ESS2-1) Develop a model | 1 | | | | | | | | | | | | | | | | | | based on evidence of
Earth's interior to
describe the cycling of
matter by thermal
convection. (HS-ESS2-
3) | | | | | | | | | | | Ponchmark P. Lin | dominand and apply k | noulada af | Ponchmark P: Und | protond and apply ke | oulodge of | Ponchmark P. Lind | erstand and apply k | design solutions for
developing, managing,
and utilizing energy
and mineral resources
based on cost-benefit
ratins (HS-FSS3-2) | Ponchmark R: Unde | retand and apply ke | owledge of Geochem | inal avalor. (Forth S | (veteme) | | | | | | conditions. | derstand and apply ke
ation about daily and | | processes and char
and atmosphere | erstand and apply kn
nges on or in the ear | | cycle, including con-
quality. (Earth and | sideration of events
Human Activity) | nowledge of the water
that impact groundwater | Bencimark B. Once | повани ани арріу кн | lowledge of Geochem | iicai cycles. (Eartii 3 | ystems) | | | | | | Use and share observations of local weather conditions to describe patterns over time. (K-ESS2-1) | | Compare multiple
solutions designed
to slow or prevent
wind or water from
changing the shape
of the land. (2-
ESS2-1) | | Make observations and determine the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. (4-ESS2-1) | hydrosphere,
and/or atmosphere
interact. (5-ESS2-
1) | principles to design
a method for
monitoring and
minimizing a
human impact on | | | | | | | | Develop a
quantitative model
to describe the
cycling of carbon
among the
hydrosphere,
atmosphere,
geosphere, and
biosphere, (HS-
ESS2-6) | | | Develop a
quantitative model
to describe the
cycling of carbon
among the
hydrosphere,
atmosphere,
geosphere, and
biosphere. (HS-
ESS2-6) | | Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather. (K-ESS3 2) | | | | Analyze and
interpret data from
maps to describe
patterns of Earth's
features. (4-ESS2-
2) | Describe and graph
the amounts and
percentages of
water and fresh
water in various
reservoirs to
provide evidence
about the
distribution of water
on earth. (5-ESS2-
2) | | | | | | | | | | | | | | Benchmark C: Ur
that have repeatin | | nowledge of events | Benchmark C: Und
and the evidence th | erstand and apply kr
ney provide of past lit | owledge of fossils
e on earth | | erstand and apply k
ysical evidence | | | erstand and apply kr | lowledge of origin and | d evolution of the ear | | | | | | | Understand that seasons of the year, day and night are events that are repeated in regular patterns. | Observe, describe and predict seasonal patterns of sunrise/sunset and phases of the moon. (1-ESS1-1) | | | Identify evidence
from patterns in
rock formations and
fossils in rock
layers to support are
explanation for
changes in
landscapes over
time. (4-ESS1-1) | | Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes. (MS-ESS3-1) | | Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spacial scales. (MS-ESS2-2) | Plan and conduct
an investigation of
the properties of
water and its
effects on Earth
materials and
surface processes.
(HS-ESS2-5) | | | | current movements
of continental and
oceanic crust and
the theory of plate
tectonics to explain
the ages of crustal | Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal procks. (HS-ESS1-5) | | | Analyze geoscience data and the results from global climate change models to make an evidence based forecast of the current rate of climate change and societate future impacts to Earth systems. (HS-ESS3-5) | | K | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Physical Science | Biology | Introduction to | Chemistry | Astronomy | Geology | Anatomy | Physics | Environmental | |---
---|---|---|--|---|---|---|--|---|---------------------|-------------------------|----------------------|--|---|---------|---------|---------------| | | Determine the | | | | | | | | | | Chemistry | | Apply scientific | Apply scientific | | | Ecology | | | effect of sunlight on
the Earth's
surface.(K-PS3-1) | | | | | | | | | | | | reasoning and
evidence from | reasoning and
evidence from
ancient Earth | | | | | | surface.(K-PS3-1) | | | | | | | | | | | | ancient Earth
materials. | materials | | | | | | | | | | | | | | | | | | meteorites, and
other planetary | meteorites, and
other planetary | | | | | | | | | | | | | | | | | | surfaces to
construct an | surfaces to
construct an | | | | | | | | | | | | | | | | | | account of Earth's | account of Earth's formation and early | | | | | | | | | | | | | | | | | | history. (HS-ESS1- | history. (HS-ESS1- | | | | | | Make observations | | | | | | | | | | | | Use a model to | Analyze | | | | | | at different times of
year to relate the | | | | | | | | | | | | describe how
variations in the | geoscience data to
make the claim that | | | | | | amount of daylight
to the time of year.
(1-ESS1-2) | | | | | | | | | | | | flow of energy into
and out of Earth's | one change to
Earth's surface can | | | | | | (1-ESS1-2) | | | | | | | | | | | | systems result in
changes in climate | create feedbacks
that cause changes
to other Earth | | | | | | | | | | | | | | | | | | (HS-ESS2-4) | lsystems (HS ₌ | | | | | | | | | | | | | | | | | | | ESS2-2) | | | | | | | | | | | | | | | | | | | an investigation of
the properties of | | | | | | | | | | | | | | | | | | | water and its | | | | | | | | | | | | | | | | | | | effects on Earth
materials and
surface processes. | | | | | | | | | | | | | | | | | | | (HS-ESS2-5) | | | | | | | | | | | | | | | | | | | (HS-ESS2-5) Construct an argument based on evidence about the | coevolution of
Earth's systems | | | | | | | | | | | <u> </u> | | | | | | | | and life on Earth.
(HS-ESS2-7) | | | | | | | | Benchmark D: Under
and weather pattern | erstand and apply kr
is. | nowledge of weather | Benchmark D: Und
atmospheric proper
climate. | lerstand and apply kr
ties and how they inf | nowledge of the earth's luence weather and | Benchmark D: Under | rstand and apply kr | nowlege of origin and o | evolution of the uni | verse. (Earth's Place | in the Universe) | | | | | | | | Represent data in | | T | Collect data to | | | Communicate | | | | Develop a model | | | | | | | | | tables and
graphical displays
to describe typical | | | provide evidence
for how the motions | | | scientific ideas
about the way
stars, over their life | | | | based on evidence
to illustrate the life
span of the sun an | | | | | | | | | weather conditions | | | and complex
interactions of air | | | cycle produce | | | | the role of nuclear | ď | | | | | | | | expected during a
particular season.
(3-ESS2-1) | | | masses results in
changes in weather
conditions. (MS- | | | elements. (HS-
ESS1-3) | | | | fusion in the sun's
core to release | | | | | | | | | (3-ESS2-1) | | | conditions. (MS-
ESS2-5) | | | | | | | core to release
energy in the form
of radiation. (HS-
ESS1-1) | | | | | | | | | Obtain and | | | Develop and use a | | | Use mathematical | | | | Construct an | | | | | | | | | combine
information to | | | model to describe | | | or computational
representations to | | | | explanation of the
Big Bang theory | | | | | | | | | describe climates in
different regions of | | | heating and
rotation of the Earth | | | of orbiting objects | | | | based on
astronomical | | | | | | | | | the world. (3-ESS2- | | | cause patterns of
atmospheric and | | | in the solar system.
(HS-ESS1-4) | | | | evidence of light
spectra, motion of | | | | | | | | | -/ | | | oceanic circulation | | | (110 2001 1) | | | | distant galaxies | . | | | | | | | | | | | that determine
regional climates.
(MS-ESS2-6) | | | | | | | matter in the | | | | | | | | | Make a claim about | | | Ask questions to | | | | | | | and composition of
matter in the
universe. (HS-
ESS1-2) | | | | | | | | | the merit of a solution that | | | clarify evidence of
the factors that | | | | | | | scientific ideas | | | | | | | | | reduces the | | | have caused the | | | | | | | about the way
stars, over their life | , | | | | | | | | impacts of a
weather-related | | | rise in global
temperatures over | | | | | | | cycle, produce
elements. (HS- | | | | | | | | | hazard. (3-ESS3-1) | | | the past century.
(MS-ESS3-5) | | | | | | | ESS1-3) | | | | | | | _ | | | | | _ | | | Ι Τ | | 1 | | Use mathematical
or computational | | | | | | | | | | | | | | | | | | | representations to
predict the motion
of orbiting objects | | | | | | | 1 | | | | | 1 | | | 1 | | | | in the solar system | . | | | | | | | | Benchmark E: Und | erstand and apply kents, and location of | nowledge of the | Benchmark E: Und | erstand and apply kr
solar system. | nowledge of the | | | | | (HS-ESS1-4) | | | | | | | | | properties, moveme system. ** | ents, and location of | | components of our | | | | | | | | | | | | | | 1 | | | | Support an
argument that
differences in the | 1 | Develop and use a
model of the Earth-
sun-moon system | | | | | | | | | | | | | 1 | | | | apparent
brightness of the | 1 | to describe the | | 1 | | | | | | | | | | | 1 | | | | brightness of the
sun compared to
other stars is due to |] | cyclic patterns of
lunar phases,
eclipses of the sun | | 1 | | | | | | | | | | | 1 | | | | Itheir relative | | eclipses of the sun
and moon, and | | 1 | | | | | | | | | | | <u> </u> | | | | distances from
Farth (5-FSS1-1) | <u> </u> | and moon, and
seasons. (MS-
ESS1-1) | | | | | | <u> </u> | | | | | | | | | | | Represent data in
graphical displays | | Develop and use a
model to describe | | | | | | | | | | | | | 1 | | | | to reveal patterns
of daily changes in | 1 | the role of gravity in
the motions within | | | | | | | | | | | | | 1 | | | | directions of | 1 | galaxies and the | | | | | | | | | | | | | 1 | | | | shadows, day and
night, and the | 1 | solar system. (MS-
ESS1-2) | | | | | | | | | | | | | 1 | | | | | 1 | | | | | | | | | | | | | | 1 | | | | appearance of some stars in the | 1 | | | | | | | | | | | | | | | | | | night sky. (5-ESS1-
2) | | Analyze and interpret data to | | | | | | | | | | | | | 1 | | | | | 1 | determine scale | | | | | | | | | | | | | 1 | | | | | 1 | properties of
objects in the solar | | | | | | | | | | | | | 1 | | | | | 1 | system. (MS-ESS1- | | | | | | | | | | | | | - | | | · | | | 1-/ | | | | | | | | | | | | , n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Physical Science | Biology | Introduction to
Chemistry | Chemistry | Astronomy | Geology | Anatomy | Physics | Environmental
Ecology | |---|--|---|--|--|--|---|---|---|--|----------------------|--|---|---|--|---------|---------
--------------------------| | Standard 2: Physical | | euladas et | Danehma I. A. I. | and and and a | euladas of beaut | Danehman's A. I.I. | mland and are to the | euladae et | Deschmed 4-11 | aland and | | ture of oter "11 " | s O Interest | | | | | | Benchmark A: Under observable and mea | rstand and apply kn
surable properties o | | Benchmark A: Under
describe and identify
properties. | erstand and apply kr
y substances based | | nature of their physic
its interactions) | rstand and apply kn
ds, mixtures, and so
cal and chemical pro | owledge of
dutions based on the
operties. (Matter and | | rstand and apply kno | | ture of atoms. (Matte | | | | | | | | Plan and conduct
investigations to
provide evidence
that vibrating
materials can make
sound and that
sound can make
materials vibrate.
(1-PS4-1) | Plan and conduct
an investigation to
describe and
classify different
kinds of materials
by their observable
properties. (2-PS1-
1) | | | Make observations and measurements to identify materials based on their properties. (5-PS1-3) | Develop models to
describe the atomic
composition of
simple molecules
and extended
structures. (MS-
PS1-1) | | | Develop models to
illustrate the
changes in the
composition of the
nucleus of the atom
and the energy
relreased during
the processes of
fission, fusion, and
radioactive decay.
(HS-PS1-8) | | Develop models to
illustrate the
changes in the
composition of the
nucleus of the atom
and the energy
relreased during
the processes of
fission, fusion, and
adioactive decay.
(PS1-8) | Develop models to
illustrate the
changes in the
composition of the
nucleus of the atom
and the energy
relreased during
the processes of
fission, fusion, and
radioactive decay.
(PS1-8) | Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. (PS1-1) | Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy relreased during the processes of fission, fusion, and radioactive decay. (HS-PS1-8) | | | | | | determine the
effect of placing
objects made with
different materials
in the path of a
beam of light. (1-
PS4-3) | Constuct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object. (3-PS1-3) | | | | | | | | | | | | | | | | | Benchmark B: Under
characteristics of liqu | rstand and apply knuids and solids. | owledge of | matter and changes | in states of matter. | lowledge of states of | and chemical change
conservation of matt | rstand and apply kn
es and their relation
er and energy. | ship to the | Benchmark B: Unde | rstand and apply kno | owledge of the struc | ture and properties o | f matter. (Matter & II | nteraction) | | | | | | Observe how materials can be changed from one state to another. | | Understand that materials can exist in different states (solid, liquid, and gas) and can be changed from one state to another by heating or cooling. | | Measure and graph
quantities to
provide evidence
that regardless of
the type of change
that occurs when
heating, cooling, or
mixing substances,
the total weight of
matter is | Analyze and
interpret data on
the properties of
substances before
and after the
substances interact | | | Use the periodic table as a model to predict the relative properites of elements based on the patterns of electrons in the outermost energy level of atoms. (PS1-1) | | | Use the periodic table as a model to predict the relative properites of elements based on the patterns of electrons in the outermost energy level of atoms. (PS1-1) | | | | | | | | Sort materials
(solids/liquids)
according to their
properties. | | | | Conduct an investigation to determine whether the mixing of two or more substances results in new substances. (5-PS1-4) | Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. (MS-PS1-5 g/h) | | | Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowedge of the patterns of chemical | | Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowedge of the patterns of chemical | Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowedge of the patterns of chemical | | | | | | | | Identify the properties of solids and liquids. | | | | | Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. (MS-PS1-3) | | | properties. (PS1-2)
Plan and conduct
an investigation to
gather evidence to
compare the
structure of
substances at the
bulk scale to infer
the strength of
electrical forces
between particles.
(PS1-3) | | properties. (PS1-2)
Plan and conduct
an investigation to
gather evidence to
compare the
structure of
substances at the
bulk scale to infer
the strength of
electrical forces
between particles.
(PS1-3) | Plan and conduct
an investigation to | | | | | | | Benchmark C: Under
postitions and motion | erstand and apply kr
ns of objects. | nowledge of the | Benchmark C: Unde
concept of conserva | erstand and apply kr
tion of mass/matter. | nowledge of the | Benchmark C: Unde
energy and energy to | rstand and apply kr
ransfer. | lowledge of forms of | | rstand and apply kn | | reactions. (Matter & | Interaction) | | | | | | Investigate to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object. (K-PS2-1) | | Describe how an object's movement can be changed based on the properties of the materials involved. | | | Understand that
when something is
broken into parts,
those parts still
have the same total
mass. | state of a pure
substance when
thermal energy is
added or removed.
(MS-PS1-4) | | describe a simple
model for waves
that includes how
the amplitude of a
wave is related to
the energy in a
wave. (MS-PS4-1) | (4) | | release or
absorption of
energy from a
chemical reaction
system depends or
the changes in tota
bond energy. (PS1-
4) | Develop a model to
illustrate that the
release or
absorption of
energy from a
chemical reaction
system depends on
the changes in total
bond energy. (PS1-
4) | | | | | | | Analyze data to determine if a design solution works as intended to change the speed or direction of an object with push or a pull. (K-PS2-2) | | Plan and conduct
an investigation to
provide evidence of
the effects of
balanced and
unbalanced forces
on the motion of an
object. (3-PS2-1) | | | | Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes. (MS-PS1-6,i) | | Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. (MS-PS4-2) | principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs. (PS1-5) | | changing the
temperature or
concentration of the
reacting particles
on the rate at which
a reaction occurs.
(PS1-5) | Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs. (PS1-5) | | | | | | | | | make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion. (3-PS2-2) | | | | | | Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. (MS-PS4-3) | 6) | | 6) | of a chemical
system by
specifying a
change in
conditions that
would produce
increased amounts
of products at
equilibrium. (PS1-
6) | | | | | | | | | | Benchmark D: Und- | erstand and apply kr
netism, and heat. | nowledge of sound, | Benchmark D: Unde and forces. (Motion | rstand and apply kr
& Stability) | owledge of motion | Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaciton. (PS1-7) Benchmark D: Unde | rstand and apply kno | representations to
support the claim
that atoms, and
therefore mass, are
conserved during a
chemical reaciton.
(PS1-7) | Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaciton. (PS1-7) and forces. (Motion & | Stability) | | | | | | К | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Physical Science | Biology | Introduction to Chemistry | Chemistry | Astronomy | Geology | Anatomy | Physics | Environmental
Ecology | |---------------------|------------|---|-----------------------|---|--|---
--|---|---|---------------------|--|--|---|-----------------------|---------|---|--------------------------| | Standard 2: Physica | Il Science | | | | | | | | | | Chemistry | | | | | | Ecology | | | | | design problem that | Ask questions and predict outcomes about the changes in energy that occur when objects | Use models to describe that describe that energy in animals energy in animals food (used for body repair, growth, motion, and to maintain body warmth) was not energy for the sun. (6-PS3-1) | | Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects. (MS-P\$2-1,a) Plan an investigation to provide evidence that the change in an object's motion depends on the colliding object's motion and the provided evidence and the object and the mass of the the mass of the | model to calculate the change in the energy of one component in a system when the change in energy of the other components and energy flows in and energy flows in and energy flows in and ut of the system are known. (HS- | macroscopic object, its mass, and its acceleration. (PS2-1) Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when its on pet | | Communicate scientific and technical and technical information about why the molecular level structure is important in the functioning of deduction of the control c | Communicate scientific and technical and technical information about why the molecular-level structure important in the functioning of functioning of CRS 2 materials. | Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the and predict the and electrostatic forces between objects. (PS2-4) | | | Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the complet, its mass, and its acceleration. (PSZ-1) Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when the complete of the complete of the complete of the complete of the claim that the total momentum of a system of objects is conserved when there on the | | | | | | | Apply scientific ideas to design, test, and refine a device that converts energy from one form to another. (4-PS3-4) | | | Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. | refine a device that
works within given
constraints to
convert one form of
energy into another | to design, evaluate,
and refine a device
f that minimizes the
force on a
macroscopic object | | | | | | | Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object | | | | | | | Develop a model of
waves to describe
patterns in terms of
amplitude and
wave length and
wave length and
cause objects to
move. (4-PS4-1) | | | magnetic forces. (MS-PS2-3.d) Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. (MS-PS2-4.e) | form of energy. (HS-PS3-3) Plan and conduct an investigation to provide evidence that the transfer of when the word when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the system (second with the components in the system (second with the components of the themptonents in the system (second with the components of the system). | during a collision. (PS2-3) Use mathematical representations of Newton's Law of Gravitation and Cocombe and predict the gravitational and electrostatic forces between objects. (PS2-4) | | | | | | | during a collision. (PS2-3) Use mathematical representations of Newton's Law of Gravitation and Octoribe and oredict the gravitational and electrostatic forces between objects. (PS2-4) | | | | | | | Develop a model to
describe that light
reflecting from
objects and
entering the eye
allows objects to be
seen. (4-PS4-2) | | | Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact. (MS-PS2-5,f) | (HS-PS3-4) Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction. (HS- PS3-5) | an investigation to
provide evidence
that an electric
current can | | | | | | | Plan and conduct
an investigation to
provide evidence
that an electric
current can
produce a magnetic
field and that a
changing magnetic
field can produce
an electric current.
(PS2-5) | | | | | | Ponchmark E. Lind | Generate and
compare multiple
solutions that use
patterns to transfer
information. (4-
PS4-3) | owledge of how | | | | Bonchmark E. Undo | retand and apply ke | land of consorus | tion of onergy and in | personne in disorder (f | - normul | | | | | | | | forces are related to | erstand and apply kr
o an object's motion. | owieuge of flow | | | | | зыни ани арріу кп | | | ncrease in disorder. (F | _noigy) | | | | | | | | | Use evidence to construct an explanation relating the speed of an object to the energy of that object. (4-PS3-1) | | | | | Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the systems are known. (PS3-1) | | Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the systems are known. (PS3-1) | the other
component(s) and
energy flows in and | f | | | Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the systems are known. (PS3-1) | | | | | | | | Support an
argument that the
gravitational
force
exerted by Earth on
objects is directed
down. (5-PS2-1) | | | | | | | | | | | Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (PS3-2) | | | | | | | | | | | | Benchmark F: Unde | stand and apply kn | nowledge of interaction | ns of energy and ma | atter (Energy, Matter | & Interactions, Wave: | s) | Design, build, and refine a device that works within given constraints to convert one form of energy into anothe form of energy. (PS3-3) | К | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Physical Science | Biology | Introduction to
Chemistry | Chemistry | Astronomy | Geology | Anatomy | Physics | Environmental
Ecology | |--------------------|------------|---|---|---|---|---|---|---|---|---------|--|--|---|---------|---------|--|--------------------------| | Standard 2: Physic | al Science | | | | | | | | | | | | | | | • | | | | | | | | | | | | Develp and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction. (PS3-5) | | an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). (PS3-4) | an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). (PS3-4) | Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter. (PS4-4) | | | Develp and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction. (PS3-5. | | | | | | | | | | | | Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves travling in various media. (PS4+1) | | through electric or
magnetic fields to
illustrate the forces
between objects
and the changes in
energy of the
objects due to the | model of two
objects interacting
through electric or
magnetic fields to
illustrate the forces
between objects | | | | Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves travling in various media. (PS4-1) | | | | | | | | | | | | Evalute the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other. (PS4-3) | | | | | | | Evalute the claims, evidence, and reasoning behind the idea that electrmagnetic radiation can be described either by a wave model or a particle model, and that for some situations one useful than the other. (PS4-3) | | | | | | | | | | | | Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter. (PS4-4) | | | | | | | Evaluate the validity and reliability of claims in published materials of the effects that differen frequencies of electromagnetic radiation have when absorbed by matter. (PS4-4) | t | | | | | | | | | | | Communicate technical inforamtion about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy. (PS4-5) | | | | | | | | | | К | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Physical Science | Biology | Introduction to
Chemistry | Chemistry | Astronomy | Geology | Anatomy | Physics | Environmental
Ecology | |--|---|---|--|---|--|----------------------------------|--|---|-------------------|---|------------------------------|------------------------|-----------|---------|---------|---------|--------------------------| | Standard 3: Life Sci | ience | | | | | | | | | | - Citotiliotis | | | | | | Lociogy | | Benchmark A: Under
characteristics of live
similar to and differen | erstand and apply k | nowledge of the | Benchmark A: Und
organisms and their | erstand and apply ki | nowledge of | Benchmark A: Unde | erstand and apply kn
nctions of cells, tissu
plecules to Organisn | owldge of the basic | Benchmark A: Unde | erstand and apply knowl | ledge of the cell. (Mole | ecules to Organism | s) | | | | | | similar to and differenthings. | ent from each other | and from non-living | organisms and then | environments. | | organ systems. (M
Processes) | olecules to Organish | s: Structures and | | | | | | | | | | | Use observations | I | I | Construct an | Construct an | Support an | 11000000 | Conduct an | I | | Plan and conduct an | 1 | | 1 | T | 1 | | 1 | | to describe
characteristics of | | | argument that
some animals form | argument that
plants and animals | argument that
plants get the | | investigation to
provide evidence
that living thigns | | | investigation to provide
evidence that | | | | | | | | | living and non-living
things. | 1 | | groups that help
members survive. | have internal and
external structures | | 1 | lare made of cells: | | | feedback mechanisms
maintain homeostasis. | | | | | | | | | | | | (3-LS2-1) | that function to
support survival, | from air and water.
(5-LS-1-1) | | either one cell or
many different | | | (HS-LS1-3) | | | | | | | | | | | | | growth, behavior,
and reproduction. | | | numbers and types
of cells. (MS-LS1- | | | | | | | | | | | | | | | Analyze and | (4-LS1-1)
Use a model to | Develop a model to | | Develop and use a | | | Construct and revise | | | | | | | | | | | | interpret data to
provide evidence | describe that
animals receive | describe the
movement of | | model to describe
the function of a | | | an explanation based
on evidence for how | | | | | | | | | | | | that animals have
traits inherited from | different types of
information through | matter among plants, animals, | | cell as a whole and
ways parts of cells | | | carbon, hydrogen, and
oxygen from sugar | | | | | | | | | | | | parents and that
variation of these
traits exists in a | their senses,
process the | decomposers, and
the environment. | | contribute to the function. (MS-LS1- | | | molecules may combine with other | | | | | | | | | | | | group of similar | information in their
brain, and respond
to the information in | (5-LS2-1) | | 2 (b)) | | | elements to form
amino acids and/or
other large carbon- | | | | | | | | | | | | 1) | different ways. (4-
LS1-2) | 1 | | | | | based molecules. (HS-
LS1-6) | | | | | | | | | | | | Use evidence to
support the | LS1-2) | | | Use argument | | | Use a model to illustrate the role of | | | | | | | | | | | | explanation that traits can be | | | | supported by
evidence for how
the body is a | | | cellular
division(mitosis) and | | | | | | | | | | | | influenced by the
environment. (3- | | | | system of
interacting | | | differentiation in
producing and | | | | | | | | | | | | LS3-2) | | | | subsystems
composed of | | | maintaining complex
organisms. (HS-LS1-4) | | | | | | | | | | | | 1 | | | | groups of cells.
(MS-LS1-3 (c)) | | | | 1 | | | | | | | | | | | Use evidence to
construct an | | | | Gather and
synthesize | | | Use a model to
illustrate how | | | | | | | | | | | | explanation for how
the variations in | | | | information that
sensory receptors | | | photosynthesis
transforms light energy | , | | | | | | | | | | | characteristics
among individuals | | | | respond to stimuli
by sending | | | into stored chemical
energy. (HS-LS1-5) | | | | | | | | | | | | of the same
species may | | | | messages to the
brain for immediate | | | | | | | |
| | | | | | | provide advantages
in surviving, finding | | | | behavior or storage
as memories. (MS- | | | | | | | | | | | | | | | mates, and
reproducing. (3- | | | | LS1-8) | | | | | | | | | | | | | | | LS4-2)
Construct an | | | | | | | Develop and use a model to illustrate the | | | | | | | | | | | | argument with
evidence that in a
particular habitat | | | | | | | hierarchial organization of | | | | | | | | | | | | some organisms
can survive well, | | | | | | | interacting systems
that provide specific | | | | | | | | | | | | some survive less
well, and some | | | | | | | functions within
multicellular | | | | | | | | | | | | cannot survive at
all. (3-LS4-3) | | | | | | | organisms. (HS-LS1-2) | | | | | | | | | | | | Develop models to describe that | | | | | | | | | | | | | | | | | | | organisms have
unique and diverse | | | | | | | | | | | | | | | | | | | life cycles but all
have in common | | | | | | | | | | | | | | | | | | | birth, growth,
reproduction, and | | | | | | | | | | | | | | | | Benchmark B: Unde
cycles of plants and | erstand and apply kr | owledge of life | death. (3-LS1-1)
Benchmark B: Und | lerstand and apply ke
ardship. | nowledge of | Benchmark B: (Und | erstand and apply ke
pass on traits (here | nowledge of how | Benchmark B: Unde | erstand and apply knowl | ledge of the molecular | r basis of heredity. (| Heredity) | | | | | | | | | | | | Organisms: Structu | res and Processes) | | | | | | | | | | | | | Explain the function
of the parts of a | Describe the major
stages in the life
cycles of | Make a claim about
the merit of a
solution to a | Explain how earth
materials provide | Identify ways
humans change | | Develop and use a
model to describe
why structural
changes to genes | Develop and use a
model to describe | | Construct an
explanation based on
evidence for how the | | | | | | | | | | plant. | cycles of
animals/insects. | problem caused | resources that | ways that can be | | why structural
changes to genes | why structural
changes to genes | | structure of DNA | | | | | | | | | | | | when the
environment | humans use and
their affect on the | either beneficial or
detrimental to | | on chromosomes | on chromosomes | | determines the
structure of proteins | | | | | | | | | | | | changes and the
types of animals | environment. (4-
ESS3-1) | themselves or
organisms. | | and may result in | may affect proteins
and may result in | | which carry out the
essential functions of | | | | | | | | | | | | that live there may
change. (3-LS4-4) | | | | harmful, beneficial,
or neutral effects to | harmful, beneficial,
or neutral effects to | | life through systems of
specialized cells. (HS-
LS1-1) | | | | | | | | | | | | | | | | Ifunction of the | the structure and function of the | | LS1-1) | | | | | | | | | | Observe and | | | | | | organism. (MS-
LS3-1)
Develop and use a | organism. (MS-
LS3-1)
Develop and use a | | Ask questions to clarify | , | | | | | | 1 | | | describe how
plants and animals | | 1 | | | | model to describe
why asexual | model to describe
why asexual | | relationships about the
role of DNA and | | | | | | | | | | resemble their
parents. (1-LS3-1) | | 1 | | | | reproduction results
in offspring with | reproduction results
in offspring with | 1 | chromosomes in
coding the instructions | | | | | | | | | | paronio: (1 200 1) | | | | | | identical genetic
information and | identical genetic
information and | | for characteristic traits | , | | | | | | | | | | | | | | | sexual reproduction
results in offspring | sexual reproduction
results in offspring | | passed from parents to
offspring. (HS-LS3-1) | | | | | | | | | | | | | | | | with genetic
variation. (MS-LS3- | with genetic
variation.(MS-LS3- | | | | | | | | | | | | | | - | | - | | 2) | 2) | | Make and defend a | | | | | | | + | | | | | 1 | | | | | | | claim based on
evidence that | | | | | | | | | | | | | | | 1 | | | | inheritable genetic
variations may result | | | | | | | | | | | | 1 | | | | | | | from: 1) new genetic
combinations through | | | | | | | | | | | | 1 | | | | | | | meiosis 2) viable
errors occuring during
replication, and/or 3) | | | | | | | | | | | | | | | | | | | mutations caused by | | | | | | | | | | | | | | | | | | | environmental factors.
(HS-LS3-2) | | | | | | | | | | | | 1 | | | | | | | Apply concepts of
statistics and
probability to explain | | | | | | | | | | | | | | | 1 | | | | the variation and distribution of | | | | | | | | | | | | 1 | | | | | | | expressed traits in a population. (HS-LS3-3) | 1 | | | | | | | | | | 1 | 1 | | | 1 | | | l | population. (DO-LOJ-J) | 1 | | L | | 1 | | | | K Standard 3: Life Sc | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Physical Science | Biology | Introduction to
Chemistry | Chemistry | Astronomy | Geology | Anatomy | Physics | Environmental
Ecology | |--|--|---|--|---|--------------------------------|---|---|--|--------------------|---|------------------------------|------------------------|--------------------|--|---------|---------|---| | | derstand and apply k
its and animals and l
ir physical environme | | | erstand and apply ki
is and how they wor | nowledge of basic
together. | Benchmark C: Undi
complementary nat
commonalities amo
Structures and Prod
Energy, and Dynam | erstand and apply k
ure of structure and
ing organisms.(Mole
cesses / Ecosystem
nics) | | | | vledge of biological evo | olution. (Biological E | volution) | | | | | | | Explain how plants and/or animals survive, grow, and meet their needs. (1-LS1-1) | Make observations of plants and animals to compare the diversity of life in different habitats. (2-LS4-1) | Understand the human organism has systems that interact with each other (circulatory, respiratory, digestive, musculoskeletal, etc.) | | | | | Apply scientific ideas to construct
an explanation for
the anatomical
similarities and
differences among
modern organisms
and between
modern
organisms to infer
evolutionary
relationships. (MS-
LS4-2) | | Communicate scientific information that common ancestry and biological evolution are supported by multiple interes of empirical evidence. (HS-LS4-1) | | | | Construct an
argument based on
evidence about the
simultaneous
coevolution of
Earth's systems
and life on Earth.
(HS-ESS2-7) | | | | | | | | | | | | | Analyze displays of
pictorial data to
compare patterns
of similarities in the
embryological
development
across multiple
species to identify
relationships not
evident in the fully
formed anatomy.
(MS-LS4-3) | | Apply concepts of
statistics and
probability to support
explanations that
organisms with an
advantageous
heritable trait tend to
increase in proportion
to organisms lacking
this trait. (HS-LS4-3) | | | | | | | | | | | | | | | | | | | Contruct an
explanation based on
evidence that the
process of evolution
process of evolution
process of evolution
process of evolution
process in number, 2:
the heritable genetic
variation of individuals
in a species due to
mutation and sexual
mutation and sexual
competition for limited
resources, and 4) the
proliferation of those
organisms that are
better able to survive
environment. (HS-LS42) | 4
11 | | | | | | | | | | | | | | | | | | contruct an
explanation based on
evidence for how
natural selection leads
to adaptations of
populations. (HS-LS4-
4)
Evaluate the evidence | | | | | | | | | | | | | | | | | | | Evaluate the evolence
supporting claims that
changes in
environmental
conditions may result
in: 1) increases in the
humber of individuals
of some species, 2)
the emergence of new
species over time, and
3) the extinction of
other species. (HS-
LS4-5) | | | | | | | | | Benchmark D: Und
help take care of th | erstand and apply
kr
e environment. | | | erstand and apply ki
wellness issues. | nowledge of | | erstand and apply k
organisms, change
vival of individual an
nisms: Structures an | | Benchmark D: Under | rstand and apply know | vledge of the interdepe | endence of organism | s. (Ecosystems, Ea | | | | | | | | Describe how humans depend on their natural and constructed environments. | Analyze behaviors
that influence
health and body
systems. | | | supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. (MS-LS2-4) | Use argument based on empirica evidence and scientific reasoning to support an explanation for hox characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plant structures. (MS-LS1-4) | patterns in the gal fossil record that document the wexistence, diversity extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in it the past. (MS-LS4-1) | | Confruct and revise are
explanation based on
evidence for the
cycling of matter and
low of energy in
aerobic and anaerobic
conditions. (HS-LS2-3 | 5 | | | Construct an explanation based on evidence for how availability of natural resources, occurence of natural hazards, and changes in climate have influenced Imman activity. (HS-ESS3-1) | | | Construct an explanation based on evidence for how availability of natural resources, occurrence of natural hazards, and changes in climate have influenced imman activity. (HS-ESS3-1) | | | | | Advocate for personal, family, and community health. | | | Analyze and interpret data to provide evidence for the effects of resource availability on organisms and oppulations of organisms in an ecosystem. (MS-LS2-1) | Construct a scientific explanation based on evidence for how environmenta and genetic factors influence the growth of organisms. (MS-LS1-5) | describes how
genetic variations | | Evaluate the evidence
for the role of group
behavior on individual
and species' chances
to survive and
reproduce. (HS-LS2-8 | | | | Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios. (HS-ESS3-2) | | | Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations and biodiversity. (HS-ESS3-3) | | К | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Physical Science | Biology | Introduction to
Chemistry | Chemistry | Astronomy | Geology | Anatomy | Physics | Environmental
Ecology | |---|--|---|---|---|---|---|---|---|-------------------|--|------------------------------|---------------------|----------------------|---|--------------|---------|--| | Standard 3: Life Sci | ence | Describe how
humans change
environments in
ways that can be
either beneficial or
detrimental to
themselves or other
organisms. | | | | | Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. (MS-LS1-6 (g) (j)) | Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time. (MS-LS4-6) | | | | | | Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations and biodiversity. | | | Evaluate and refine
a technological
solution that
reduces impacts of
human activities on
natural systems.
(HS-ESS3-4) | | | | | | | | | Develop a model to
describe how food
is rearranged
through chemical
reactions forming
new molecules that
support growth
and/or release
energy as this
matter moves
through an
organism. (MS-
PS1-7 (h) (k)) | | | | | | | and biodiversity. (HS-ESS3-3) Evaluate and refine a technological solution that reduces impacts of human activities on natural systems. (HS-ESS3-4) | | | Use computational representation to illustrate the relationship among Earth systems and how those relationships are being modified due to human activity. (HS-ESS3-6) | | | | | | | | | PS1-7 (h) (k)) | | | | | | | | | | Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions. (HS-LS2-3) Use mathematical representations to support claims for the cycling of matter and flow of | | | | | | | | | | | | | | | | | | | energy among organisms in an ecosystems. (HS-LS2-4) Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere. (HS-LS2-5) Evaluate the | | | | | | | | | | | | | | | | | | | evidence for the role of group behavior on individual and species' chances to survive and reproduce. (HS-LS2-8) Design, evaluate, and refine a | | | | | | | | | | | | | | | | | | | solution for reducing the impacts of human activities on the environment and biodiversity. (HS-LS2-7) Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on | | | | | | | | | | | | | | | | | | | human activity on
biodiversity. (HS-
LS4-6)
Use mathematical
and/or
computational
representations to
support
explanations of
factors that affect
carrying capacity of
ecosystems at
different scales.
(IHS-LS2-1) | | Benchmark E: Unde
human body structu
functions) | erstand and apply kn
res (human body pa | owledge of basic
rts and their | | | | Benchmark E: Unde
cycling of matter an | erstand and apply kn
d energy in ecosyste | owledge of the
ems. | Benchmark E: Unde | rstand and apply knowl | ledge of the interdepe | ndence of matter, e | nergy, and organizat | tion of living systems. | (Ecosystems) | | | | Describe how
humans have
distinct body
structures for
functions (walking,
thinking, holding,
seeing and talking). | | | | | | Develop a model to
describe the cycling
of matter and flow
of energy among
living and nonliving
parts of an
ecosystem. (MS-
LS2-3) | | | | Use a model to
illustrate that cellular
respiration is a
chemical process
whereby the bonds of
food molecules and
oxygen molecules are
broken and the bonds
in new compounds are
formed resulting in a
net transfer of energy.
(HS-LS1-7) | | | | Analyze geoscience data and the results from global climate change models to make an evidence based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems. (HS-ESS3-5) | | | Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales. (HS-LS2-2) | | К | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Physical Science | Biology | Introduction to
Chemistry | Chemistry | Astronomy | Geology | Anatomy | Physics | Environmental
Ecology | |--|----------------------|------------------|---|---|---|--|---|--|-------------------|---|------------------------------|--------------------|--------------------|---------|---|---------
---| | Standard 3: Life Sci | ience | T | | | | | | | | Evaluate the evidence | | | | | | | Evaluate the | | | | | | | | | | | | Evaluate the evidence supporting claims that changes in environmental conditions may result in: 1) increases in the number of individuals of some species, 2) the emergence of new species over time, and | | | | | | | claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but | | | | | | | | | | | | the extinction of other species. (HS-LS4-5) | | | | | | | changing
conditions may
result in a new
ecosystem. (HS-
LS2-6) | | | | | | | | | | | | | | | | | | | evidence
supporting claims
that changes in
environmental
conditions may
result in: 1)
increases in the
number of
individuals of some
species, 2) the
emergence of new
species over time,
and 3) the
extinction of other
species. (HS-LS4- | | | | | | | | | | | | | | | | | | | 5) Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. (HS-ESS3-1) | | | | | | | | | | | | | | | | | | | Develop a
quantitative model
to describe the
cycling of carbon
among the
hydrosphere,
atmosphere,
geosphere, and
biosphere, (HS-
ESS2-6) | | | | | | | | | | | | | | | | | | | Use a model to describe how variations in the flow of energy into and out of Earth's systems results in changes in climate. (HS-ESS2-4) | | Benchmark F: Und health habits. | erstand and apply kr | nowledge of good | | | | Benchmark F: (Under
the social and perso
issues.) From Molec
Processes | erstand and demons
nal implications of e
cules to Organisms: | trate knowledge of
nvironmental
Structures and | Benchmark F: Unde | rstand and apply knowl | edge of the interdepe | ndence of the beha | vior of organisms. | | | | | | Identify influences
that affect personal
health and health of
others. (washing
hands, covering
mouth, etc.) | f | | | | | Evaluate competing design solutions for maintaining biodiversity and ecosystem services. (MS-LS2-5) | | Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms. (MS-LS4-5) | | | | | | | Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms. (HS-LS1-2) | | | | | | | | | | | | | | | | | | | Plan and conduct
an investigation to
provide evidence
that feedback
mechanisms
maintain
homeostasis. (HS-
LS1-3)
Applies basic | | | | | | | | | | Ponchmod: C. II | vertend and analysis | owlodge of the | | | | | | | Applies basic
understanding of
the skeletal and
muscular systems
in relationship to
kinesiology. | | | | | | | | | | functions and interconsystems including the disease causes. | erstand and apply kn
onnections of the ma
e breakdown in stru | owledge of the
ajor human body
cture or function that | | | | | | | | | | | | | | | | | Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. (MS-LS2-2) | Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. (MS-LS1-3 (c)) | | | | | | | | | | |